Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A comparison of reversible versus irreversible protein glutathionylation.

Identifieur interne : 000686 ( Main/Exploration ); précédent : 000685; suivant : 000687

A comparison of reversible versus irreversible protein glutathionylation.

Auteurs : Danyelle M. Townsend [États-Unis] ; Volodymyr I. Lushchak [Ukraine] ; Arthur J L. Cooper [États-Unis]

Source :

RBID : pubmed:24974182

Descripteurs français

English descriptors

Abstract

Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.

DOI: 10.1016/B978-0-12-420117-0.00005-0
PubMed: 24974182
PubMed Central: PMC4603650


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A comparison of reversible versus irreversible protein glutathionylation.</title>
<author>
<name sortKey="Townsend, Danyelle M" sort="Townsend, Danyelle M" uniqKey="Townsend D" first="Danyelle M" last="Townsend">Danyelle M. Townsend</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lushchak, Volodymyr I" sort="Lushchak, Volodymyr I" uniqKey="Lushchak V" first="Volodymyr I" last="Lushchak">Volodymyr I. Lushchak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.</nlm:affiliation>
<country xml:lang="fr">Ukraine</country>
<wicri:regionArea>Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk</wicri:regionArea>
<wicri:noRegion>Ivano-Frankivsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Arthur J L" sort="Cooper, Arthur J L" uniqKey="Cooper A" first="Arthur J L" last="Cooper">Arthur J L. Cooper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA. Electronic address: arthur_cooper@nymc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24974182</idno>
<idno type="pmid">24974182</idno>
<idno type="doi">10.1016/B978-0-12-420117-0.00005-0</idno>
<idno type="pmc">PMC4603650</idno>
<idno type="wicri:Area/Main/Corpus">000616</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000616</idno>
<idno type="wicri:Area/Main/Curation">000616</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000616</idno>
<idno type="wicri:Area/Main/Exploration">000616</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A comparison of reversible versus irreversible protein glutathionylation.</title>
<author>
<name sortKey="Townsend, Danyelle M" sort="Townsend, Danyelle M" uniqKey="Townsend D" first="Danyelle M" last="Townsend">Danyelle M. Townsend</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lushchak, Volodymyr I" sort="Lushchak, Volodymyr I" uniqKey="Lushchak V" first="Volodymyr I" last="Lushchak">Volodymyr I. Lushchak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.</nlm:affiliation>
<country xml:lang="fr">Ukraine</country>
<wicri:regionArea>Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk</wicri:regionArea>
<wicri:noRegion>Ivano-Frankivsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Arthur J L" sort="Cooper, Arthur J L" uniqKey="Cooper A" first="Arthur J L" last="Cooper">Arthur J L. Cooper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA. Electronic address: arthur_cooper@nymc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in cancer research</title>
<idno type="eISSN">2162-5557</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (analogs & derivatives)</term>
<term>Alanine (chemistry)</term>
<term>Aminobutyrates (chemistry)</term>
<term>Enzymes (chemistry)</term>
<term>Gene Expression Regulation, Neoplastic (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (physiology)</term>
<term>Glutathione Disulfide (MeSH)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Humans (MeSH)</term>
<term>Lens, Crystalline (metabolism)</term>
<term>Neoplasms (metabolism)</term>
<term>Peptides (chemistry)</term>
<term>Proteins (chemistry)</term>
<term>Reactive Oxygen Species (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alanine (analogues et dérivés)</term>
<term>Alanine (composition chimique)</term>
<term>Amino-butyrates (composition chimique)</term>
<term>Cristallin (métabolisme)</term>
<term>Disulfure de glutathion (MeSH)</term>
<term>Enzymes (composition chimique)</term>
<term>Espèces réactives de l'oxygène (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (physiologie)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Peptides (composition chimique)</term>
<term>Protéines (composition chimique)</term>
<term>Régulation de l'expression des gènes tumoraux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Tumeurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alanine</term>
<term>Aminobutyrates</term>
<term>Enzymes</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Peptides</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alanine</term>
<term>Amino-butyrates</term>
<term>Enzymes</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Peptides</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lens, Crystalline</term>
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cristallin</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Neoplastic</term>
<term>Glutathione Disulfide</term>
<term>Humans</term>
<term>Reactive Oxygen Species</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Espèces réactives de l'oxygène</term>
<term>Humains</term>
<term>Régulation de l'expression des gènes tumoraux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24974182</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2162-5557</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>122</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Advances in cancer research</Title>
<ISOAbbreviation>Adv Cancer Res</ISOAbbreviation>
</Journal>
<ArticleTitle>A comparison of reversible versus irreversible protein glutathionylation.</ArticleTitle>
<Pagination>
<MedlinePgn>177-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/B978-0-12-420117-0.00005-0</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">B978-0-12-420117-0.00005-0</ELocationID>
<Abstract>
<AbstractText>Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.</AbstractText>
<CopyrightInformation>© 2014 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Townsend</LastName>
<ForeName>Danyelle M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lushchak</LastName>
<ForeName>Volodymyr I</ForeName>
<Initials>VI</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Arthur J L</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA. Electronic address: arthur_cooper@nymc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA08660</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R41 CA117259</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA117259</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>8 P20 GM103542-02</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 GM103542</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR024485</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5P20RR024485-02</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 ES017453</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Adv Cancer Res</MedlineTA>
<NlmUniqueID>0370416</NlmUniqueID>
<ISSNLinking>0065-230X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000613">Aminobutyrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20748-08-7</RegistryNumber>
<NameOfSubstance UI="C088694">dehydrobutyrine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>98RA387EKY</RegistryNumber>
<NameOfSubstance UI="C015102">dehydroalanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000613" MajorTopicYN="N">Aminobutyrates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015972" MajorTopicYN="N">Gene Expression Regulation, Neoplastic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007908" MajorTopicYN="N">Lens, Crystalline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Dehydroalanine</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Glutathione</Keyword>
<Keyword MajorTopicYN="N">Glutathione S-transferases</Keyword>
<Keyword MajorTopicYN="N">Glutathione disulfide</Keyword>
<Keyword MajorTopicYN="N">Irreversible protein glutathionylation</Keyword>
<Keyword MajorTopicYN="N">Lanthionine</Keyword>
<Keyword MajorTopicYN="N">Reversible glutathionylation</Keyword>
<Keyword MajorTopicYN="N">γ-Glutamyl-L-cysteine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24974182</ArticleId>
<ArticleId IdType="pii">B978-0-12-420117-0.00005-0</ArticleId>
<ArticleId IdType="doi">10.1016/B978-0-12-420117-0.00005-0</ArticleId>
<ArticleId IdType="pmc">PMC4603650</ArticleId>
<ArticleId IdType="mid">NIHMS725957</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Res Toxicol. 2009 Jun;22(6):1050-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19480392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1999 Apr;49(4):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10079771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">42902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2005 Apr;272(1-2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16010980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 20;282(29):21169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Invest. 2011 Dec;29(10):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Apr 29;220(4596):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6836290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Metab Toxicol. 2011 Jul;7(7):891-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Amino Acids. 2012;2012:736837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2008 Dec;327(3):770-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18791061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1975 Feb 25;250(4):1422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1112810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2010 Apr;31(2):145-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20206201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 2012 Dec;42(12):1170-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22725664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2011 May;22(3):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Vis. 2008;14:862-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2005 Sep 21;3(18):3357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 27;287(5):3454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Sci. 2004 May;95(5):454-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Mar 8;432(2):291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Apr 1;443(1):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Saf. 2008;31(2):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18217789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2007 May 1;73(9):1257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1963 Nov;50:931-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14082360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1990;73(1):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Interv. 2007 Dec;7(6):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2004 Oct;79(4):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2008 Aug;36(8):1546-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18474673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(1):e00033-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23386433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2013;527:113-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23830628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):930-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2009 May;107(5):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2011 Nov;3(11):1119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 19;338(6105):387-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 31;293(5535):1666-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11533492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2011 Sep 20;44(9):730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21563755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1999 Jun 25;730(1):25-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10437668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2011 May;43(2):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16321806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1950 Jun;184(2):633-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15428447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2011 Jun;41(1):7-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20306345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Jun 10;255(11):5281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7372636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):916-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1966 Aug 20;88(16):3851-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5916376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Sep 10;256(17):9167-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7021557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 May 25;258(10):6030-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Jan;54:51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23108103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2012 Dec 17;25(12):2670-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23106594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Oct 16;112(41):13091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2008 Apr 28;87(2):108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 1947 Aug;8(1):35-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20259027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2009 Sep;15(9):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 May 1;379(Pt 3):595-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14763903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22949699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1973 Nov 1;39(1):301-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4770799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Ukraine</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
<li>État de New York</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Townsend, Danyelle M" sort="Townsend, Danyelle M" uniqKey="Townsend D" first="Danyelle M" last="Townsend">Danyelle M. Townsend</name>
</region>
<name sortKey="Cooper, Arthur J L" sort="Cooper, Arthur J L" uniqKey="Cooper A" first="Arthur J L" last="Cooper">Arthur J L. Cooper</name>
</country>
<country name="Ukraine">
<noRegion>
<name sortKey="Lushchak, Volodymyr I" sort="Lushchak, Volodymyr I" uniqKey="Lushchak V" first="Volodymyr I" last="Lushchak">Volodymyr I. Lushchak</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000686 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000686 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24974182
   |texte=   A comparison of reversible versus irreversible protein glutathionylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24974182" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020